شماره ركورد كنفرانس :
1730
عنوان مقاله :
3D Heart Segmentation on CT Images Using Superellipsoid Model Fitting
عنوان به زبان ديگر :
3D Heart Segmentation on CT Images Using Superellipsoid Model Fitting
پديدآورندگان :
Ghelich Oghli Mostafa نويسنده , Fallahi Alireza نويسنده , Pooyan Mohammad نويسنده
كليدواژه :
Levenberg method , deformable models , Partial data , Superellipsoid , CT images , MRI images
عنوان كنفرانس :
بيستمين كنفرانس مهندسي برق ايران
چكيده لاتين :
Model based segmentation is one of the best methods for segmentation of the heart in CT and MRI images. Because of basic characteristics of the heart shape, it can be represented bysuch models like ellipse and superellipse. Among model based methods elliptic and superelliptic methods are morecomputationally expensive. But when prior knowledge of the heart shape is available the parameter estimations become reliable. In this paper we propose a 3-D semi-automatic heartsegmentation using transverse axis slices. The approach consists of fitting superellipse to each slice and making a 3-Dsuperellipsoid model of the heart. We used an iterative method over a set of given data as partial data. Moreover partial data forobtaining prior knowledge of the heart shape are used that makes our method computationally less expensive. Results showthat the addition of partial data increase robustness of a fitting. Also this method can segment hidden parts of heart in transverse axis CT images
شماره مدرك كنفرانس :
4460809