شماره ركورد كنفرانس :
1730
عنوان مقاله :
Compressed Sensing for Denoising in Adaptive System Identification
عنوان به زبان ديگر :
Compressed Sensing for Denoising in Adaptive System Identification
پديدآورندگان :
Hosseini Hossein نويسنده , G. Shayesteh Mahrokh نويسنده
تعداد صفحه :
5
كليدواژه :
Compressed sensing , Reconstruction algorithm , Least Mean Square , Sparse system identification , random filter
سال انتشار :
2012
عنوان كنفرانس :
بيستمين كنفرانس مهندسي برق ايران
زبان مدرك :
فارسی
چكيده لاتين :
We propose a new technique for adaptive identification of sparse systems based on the compressed sensing (CS) theory. We manipulate the transmitted pilot (input signal)and the received signal such that the weights of adaptive filter approach the compressed version of the sparse system instead ofthe original system. To this end, we use random filter structure at the transmitter to form the measurement matrix according to theCS framework. The original sparse system can be reconstructed by the conventional recovery algorithms. As a result, the denoising property of CS can be deployed in the proposedmethod at the recovery stage. The experiments indicate significant performance improvement of proposed methodcompared to the conventional LMS method which directly identifies the sparse system. Furthermore, at low levels of sparsity, our method outperforms a specialized identification algorithm that promotes sparsity
شماره مدرك كنفرانس :
4460809
سال انتشار :
2012
از صفحه :
1
تا صفحه :
5
سال انتشار :
2012
لينک به اين مدرک :
بازگشت