شماره ركورد كنفرانس :
144
عنوان مقاله :
Analiysis of Self-Similarity in Recommender Systems
پديدآورندگان :
Hosseinzadeh Aghdam Mehdi نويسنده , Analoui Mortaza نويسنده Department of Computer Engineering, Iran University of Science and Technology. Tehran, Iran. , Kabiri Peyman نويسنده
تعداد صفحه :
4
كليدواژه :
self-similarity , rating sequence , Hurst Factor , Recommender System
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
زبان مدرك :
فارسی
چكيده فارسي :
The objective of recommender systems is to estimate the unknown ratings. This paper presents an efficient method to generate the self-similarity rating matrix for recommender systems. We show that the rating behavior of users is statistically self-similar that none of the commonly used recommender system models is able to detect this fractal behavior. This behavior can be used to predict the unknown ratings. The experimental results showed that the proposed method obtains similar accuracy in comparison to the traditional recommender system method with much less computational cost.
شماره مدرك كنفرانس :
3817034
سال انتشار :
2014
از صفحه :
1
تا صفحه :
4
سال انتشار :
0
لينک به اين مدرک :
بازگشت