Author/Authors :
Kenya Murakami and Dale E. Seborg، نويسنده ,
DocumentNumber :
1384341
Title Of Article :
Constrained parameter estimation with applications to blending operations
شماره ركورد :
11583
Latin Abstract :
The classical least squares approach to parameter estimation for dynamic models ignores a priori information about the feasible values of the estimated parameters. But in many practical problems, such information is available in the form of upper and lower limits. In this paper, two alternative techniques are evaluated for this important class of constrained parameter estimation problems for dynamic systems. Simulation results for two blending problems illustrate that more accurate parameter estimates and better predictions can be obtained by using a quadratic programming approach.
From Page :
195
NaturalLanguageKeyword :
Inequality constraints , Blending systems , Least squares , Quadratic programming , Constrained parameter estimation
JournalTitle :
Studia Iranica
To Page :
202
To Page :
202
Link To Document :
بازگشت