Author/Authors :
Cengiz, Mehmet Ali Ondokuz Mayıs Üniversitesi - Fen Edebiyat Fakültesi - İstatistik Bölümü, Turkey , Terzi, Erol Ondokuz Mayıs Üniversitesi - Fen Edebiyat Fakültesi - İstatistik Bölümü, Turkey , Şenel, Talat Ondokuz Mayıs Üniversitesi - Fen Edebiyat Fakültesi - İstatistik Bölümü, Turkey , Murat, Naci Ondokuz Mayıs Üniversitesi - Fen Edebiyat Fakültesi - İstatistik Bölümü, Turkey
Title Of Article :
A Bayesian Approach for Parameter Estimation in Logistic Regression
شماره ركورد :
27535
Abstract :
In statistics, Bayesian inference is a method of inference in which Bayes rule is used to update the probability estimate for a parameter as additional evidence is learned. Bayesian updating is an important technique throughout statistics, and especially in mathematical statistics. Exhibiting a Bayesian derivation for a statistical method automatically ensures that the method works as well as any competing method. In this study, we briefly give Bayesian methodology with two real data application to logistic regression.
From Page :
15
NaturalLanguageKeyword :
Bayesian Approach , Logistic Regression , MCMC
JournalTitle :
Afyon Kocatepe University Journal Of Science an‎d Engineering
To Page :
22
Link To Document :
بازگشت