Title :
InGaAs/InP DHBTs with 120-nm collector having simultaneously high f/sub /spl tau//, fmax/spl ges/450 GHz
Author :
Griffith, Z. ; Rodwell, M.J.W. ; Xiao-Ming Fang ; Loubychev, D. ; Ying Wu ; Fastenau, J.M. ; Liu, A.W.K.
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of California, Santa Barbara, CA, USA
Abstract :
InP/In/sub 0.53/Ga/sub 0.47/As/InP double heterojunction bipolar transistors (DHBT) have been designed for increased bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 450 GHz f/sub /spl tau// and 490 GHz fmax, which is the highest simultaneous f/sub /spl tau// and fmax for any HBT. The devices have been scaled vertically for reduced electron collector transit time and aggressively scaled laterally to minimize the base-collector capacitance associated with thinner collectors. The dc current gain /spl beta/ is /spl ap/ 40 and V/sub BR,CEO/=3.9 V. The devices operate up to 25 mW/μm2 dissipation (failing at J/sub e/=10 mA/μm2, V/sub ce/=2.5 V, /spl Delta/T/sub failure/=301 K) and there is no evidence of current blocking up to J/sub e//spl ges/12 mA/μm2 at V/sub ce/=2.0 V from the base-collector grade. The devices reported here employ a 30-nm highly doped InGaAs base, and a 120-nm collector containing an InGaAs/InAlAs superlattice grade at the base-collector junction.
Keywords :
III-V semiconductors; gallium arsenide; heterojunction bipolar transistors; indium compounds; 120 nm; 2 V; 2.5 V; 3.9 V; 30 nm; 450 GHz; 490 GHz; DC current gain; DHBT; InP-In/sub 0.53/Ga/sub 0.47/As-InP; analog circuits; double heterojunction bipolar transistors; increased bandwidth digital circuits; mesa structure; minimized base-collector capacitance; reduced electron collector transit time; Analog circuits; Bandwidth; Capacitance; Double heterojunction bipolar transistors; Electrons; Heterojunction bipolar transistors; Indium compounds; Indium gallium arsenide; Indium phosphide; Superlattices; Heterojunction bipolar transistor (HBT); indium phosphide (InP);
Journal_Title :
Electron Device Letters, IEEE
DOI :
10.1109/LED.2005.852519