DocumentCode :
1000114
Title :
Embolic Doppler ultrasound signal detection using discrete wavelet transform
Author :
Aydin, Nizamettin ; Marvasti, Farokh ; Markus, Hugh S.
Author_Institution :
Sch. of Eng. & Electron., Univ. of Edinburgh, UK
Volume :
8
Issue :
2
fYear :
2004
fDate :
6/1/2004 12:00:00 AM
Firstpage :
182
Lastpage :
190
Abstract :
Asymptomatic circulating emboli can be detected by Doppler ultrasound. Embolic Doppler ultrasound signals are short duration transient like signals. The wavelet transform is an ideal method for analysis and detection of such signals by optimizing time-frequency resolution. We propose a detection system based on the discrete wavelet transform (DWT) and study some parameters, which might be useful for describing embolic signals (ES). We used a fast DWT algorithm based on the Daubechies eighth-order wavelet filters with eight scales. In order to evaluate feasibility of the DWT of ES, two independent data sets, each comprising of short segments containing an ES (N=100), artifact (N=100) or Doppler speckle (DS) (N=100), were used. After applying the DWT to the data, several parameters were evaluated. The threshold values used for both data sets were optimized using the first data set. While the DWT coefficients resulting from artifacts dominantly appear at the higher scales (five, six, seven, and eight), the DWT coefficients at the lower scales (one, two, three, and four) are mainly dominated by ES and DS. The DWT is able to filter out most of the artifacts inherently during the transform process. For the first data set, 98 out of 100 ES were detected as ES. For the second data set, 95 out of 100 ES were detected as ES when the same threshold values were used. The algorithm was also tested with a third data set comprising 202 normal ES; 198 signals were detected as ES.
Keywords :
Doppler measurement; biomedical ultrasonics; filters; fuzzy logic; medical signal detection; wavelet transforms; Daubechies eighth-order wavelet filter; Doppler speckle artifacts; Doppler ultrasound; asymptomatic circulating emboli; cerebral emboli; discrete wavelet transform; embolic doppler ultrasound signal detection; fuzzy logic; short duration transient; time-frequency resolution; Discrete wavelet transforms; Filters; Optimization methods; Signal analysis; Signal detection; Signal resolution; Speckle; Time frequency analysis; Ultrasonic imaging; Wavelet analysis; Algorithms; Feasibility Studies; Humans; Image Interpretation, Computer-Assisted; Infarction, Middle Cerebral Artery; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted; Ultrasonography, Doppler;
fLanguage :
English
Journal_Title :
Information Technology in Biomedicine, IEEE Transactions on
Publisher :
ieee
ISSN :
1089-7771
Type :
jour
DOI :
10.1109/TITB.2004.828882
Filename :
1303561
Link To Document :
بازگشت