DocumentCode :
1003010
Title :
Fast approximated power iteration subspace tracking
Author :
Badeau, Roland ; David, Bertrand ; Richard, Gaël
Author_Institution :
Dept. of Signal & Image Process., Ecole Nat. Superieure des Telecommun., Paris, France
Volume :
53
Issue :
8
fYear :
2005
Firstpage :
2931
Lastpage :
2941
Abstract :
This paper introduces a fast implementation of the power iteration method for subspace tracking, based on an approximation that is less restrictive than the well-known projection approximation. This algorithm, referred to as the fast approximated power iteration (API) method, guarantees the orthonormality of the subspace weighting matrix at each iteration. Moreover, it outperforms many subspace trackers related to the power iteration method, such as PAST, NIC, NP3, and OPAST, while having the same computational complexity. The API method is designed for both exponential windows and sliding windows. Our numerical simulations show that sliding windows offer a faster tracking response to abrupt signal variations.
Keywords :
adaptive signal processing; iterative methods; matrix algebra; tracking; adaptive estimation; computational complexity; exponential window; fast approximated power iteration; projection approximation; sliding window; subspace tracking; subspace weighting matrix; Adaptive filters; Approximation algorithms; Computational complexity; Design methodology; Helium; Jacobian matrices; Matrix decomposition; Numerical simulation; Signal processing; Signal processing algorithms; Adaptive estimation; power iteration; projection approximation; subspace tracking;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2005.850378
Filename :
1468483
Link To Document :
بازگشت