Title :
An online kernel change detection algorithm
Author :
Desobry, Frederic ; Davy, Manuel ; Doncarli, Christian
Author_Institution :
Inst. de Recherche en Commun. et Cybernetique de Nantes, UMR CNRS, Nantes, France
Abstract :
A number of abrupt change detection methods have been proposed in the past, among which are efficient model-based techniques such as the Generalized Likelihood Ratio (GLR) test. We consider the case where no accurate nor tractable model can be found, using a model-free approach, called Kernel change detection (KCD). KCD compares two sets of descriptors extracted online from the signal at each time instant: The immediate past set and the immediate future set. Based on the soft margin single-class Support Vector Machine (SVM), we build a dissimilarity measure in feature space between those sets, without estimating densities as an intermediary step. This dissimilarity measure is shown to be asymptotically equivalent to the Fisher ratio in the Gaussian case. Implementation issues are addressed; in particular, the dissimilarity measure can be computed online in input space. Simulation results on both synthetic signals and real music signals show the efficiency of KCD.
Keywords :
Gaussian processes; signal detection; support vector machines; Gaussian process; dissimilarity measure; generalized likelihood ratio; machine learning; model-based technique; model-free approach; music segmentation; online kernel change detection algorithm; single-class support vector machine; synthetic signal; Density measurement; Detection algorithms; Extraterrestrial measurements; Kernel; Multiple signal classification; Object detection; Particle measurements; Signal processing; Support vector machines; Testing; Abrupt change detection; kernel method; music segmentation; online; single-class SVM;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2005.851098