DocumentCode :
1005660
Title :
Neural network classifiers under changing a priori conditions
Author :
Martens, Jean-Pierre
Volume :
29
Issue :
6
fYear :
1993
fDate :
3/18/1993 12:00:00 AM
Firstpage :
527
Lastpage :
529
Abstract :
Once a multilayer perceptron is trained on labelled examples, it is applied to classify new patterns. If the a priori class probabilities of the new patterns are changed, the network becomes suboptimal for its task. The Letter shows how to obtain a posteriori class probabilities under the new circumstances, without the need for a new supervised training session.
Keywords :
feedforward neural nets; learning (artificial intelligence); pattern recognition; probability; 1D two class problem; a priori class probabilities; error rates; labelled examples; multilayer perceptron training; neural network classifiers; pattern classification;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19930352
Filename :
256265
Link To Document :
بازگشت