Diffraction of an arbitrary electromagnetic optical field by a conducting curved wedge is considered. The diffracted field according to Keller\´s geometrical theory of diffraction (GTD) can be expressed in a particularly simple form by making use of rotations of the incident and reflected fields about the edge. In this manner only a single scalar diffraction coefficient is involved. Near to shadow boundaries where the GTD solution is not valid, a uniform theory based on the Ansatz of Lewis, Boersma, and Ahluwalia is described. The dominant terms, to the order of

included, are used to compute the field exactly on the shadow boundaries. In contrast with the uniform theory of Kouyoumjian and Pathak, some extra terms occur: one depends on the edge curvature and wedge angle; another on the angular rate of change of the incident or reflected field at the point of observation.