DocumentCode :
1009314
Title :
Variational Bayesian Blind Deconvolution Using a Total Variation Prior
Author :
Babacan, S. Derin ; Molina, Rafael ; Katsaggelos, Aggelos K.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL
Volume :
18
Issue :
1
fYear :
2009
Firstpage :
12
Lastpage :
26
Abstract :
In this paper, we present novel algorithms for total variation (TV) based blind deconvolution and parameter estimation utilizing a variational framework. Using a hierarchical Bayesian model, the unknown image, blur, and hyperparameters for the image, blur, and noise priors are estimated simultaneously. A variational inference approach is utilized so that approximations of the posterior distributions of the unknowns are obtained, thus providing a measure of the uncertainty of the estimates. Experimental results demonstrate that the proposed approaches provide higher restoration performance than non-TV-based methods without any assumptions about the unknown hyperparameters.
Keywords :
Bayes methods; deconvolution; hyperparameters; noise priors; total variation prior; unknown hyperparameters; variational Bayesian blind deconvolution; variational inference approach; Bayesian methods; blind deconvolution; parameter estimation; total variation (TV); variational methods; Algorithms; Artifacts; Artificial Intelligence; Bayes Theorem; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Models, Statistical; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2008.2007354
Filename :
4689325
Link To Document :
بازگشت