Abstract :
In wireless communications, cochannel interference (CCI) and intersymbol interference (ISI) are two main factors that limit system performance. Conventionally, a beamformer is used to reduce CCI, whereas an equalizer is used to compensate for ISI. These two devices can be combined into one as space-time equalizer (STE). A training sequence is usually required to train the STE prior to its use. In some applications, however, spatial information corresponding to a desired user is available, but the training sequence is not. In this paper, we propose an adaptive decision feedback STE to cope with this problem. Our scheme consists of an adaptive decision feedback generalized sidelobe canceller (DFGSC), a blind decision feedback equalizer (DFE), and a channel estimator. Due to the feedback operation, the proposed DFGSC is not only superior to the conventional generalized sidelobe canceller but also robust to multipath channel propagation and spatial signature error. Theoretical results are derived for optimum solutions, convergence behavior, and robustness properties. With the special channel-aided architecture, the proposed blind DFE can reduce the error propagation effect and be more stable than the conventional blind DFE. Simulation results show that the proposed STE is effective in mitigating both CCI and ISI, even in severe channel environments.
Keywords :
adaptive equalisers; blind equalisers; channel estimation; cochannel interference; convergence; decision feedback equalisers; interference suppression; intersymbol interference; multipath channels; sequences; wireless channels; CCI; DFE; ISI; STE; adaptive DFGSC; blind decision feedback equalizer; channel estimator; channel-aided architecture; cochannel interference; convergence behavior; decision feedback generalized sidelobe canceller; intersymbol interference; multipath channel propagation; space-time equalization; spatial signature error; training sequence; wireless communication; Blind equalization; Space-time equalizer (STE); blind equalization; channel estimation; decision feedback equalizer (DFE); generalized sidelobe canceller (GSC); space–time equalizer (STE);