DocumentCode :
1010631
Title :
The Goodman-Kruskal coefficient and its applications in genetic diagnosis of cancer
Author :
Jaroszewicz, Szymon ; Simovici, Dan A. ; Kuo, Winston P. ; Ohno-Machado, Lucila
Author_Institution :
Dept. of Comput. Sci., Univ. of Massachusetts, Boston, MA, USA
Volume :
51
Issue :
7
fYear :
2004
fDate :
7/1/2004 12:00:00 AM
Firstpage :
1095
Lastpage :
1102
Abstract :
Increasing interest in new pattern recognition methods has been motivated by bioinformatics research. The analysis of gene expression data originated from microarrays constitutes an important application area for classification algorithms and illustrates the need for identifying important predictors. We show that the Goodman-Kruskal coefficient can be used for constructing minimal classifiers for tabular data, and we give an algorithm that can construct such classifiers.
Keywords :
arrays; cancer; genetics; medical diagnostic computing; pattern classification; Goodman-Kruskal coefficient; bioinformatics; cancer; classification algorithms; gene expression; genetic diagnosis; microarrays; pattern recognition; predictors; Bioinformatics; Biological tissues; Cancer; Cells (biology); Computer science; DNA; Gene expression; Genetics; Glass; Pattern recognition; Algorithms; Cluster Analysis; Diagnosis, Computer-Assisted; Genetic Screening; Humans; Neoplasms; Oligonucleotide Array Sequence Analysis; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/TBME.2004.827267
Filename :
1306562
Link To Document :
بازگشت