DocumentCode :
1013213
Title :
Performance of kernel-based fuzzy clustering
Author :
Graves, D. ; Pedrycz, W.
Author_Institution :
Univ. of Alberta, Edmonton
Volume :
43
Issue :
25
fYear :
2007
Firstpage :
1445
Lastpage :
1446
Abstract :
An evaluation and comparative study of kernel-based fuzzy clustering algorithms is presented. The main objective is to evaluate the performance gains provided by kernelised FCM (fuzzy C-means). It is shown that kernelised FCM provides marginal improvements in the classification rate for several popular Machine Learning data sets. It is observed that the performance of kernelised FCM depends greatly on the selection of the kernel parameters.
Keywords :
fuzzy set theory; learning (artificial intelligence); pattern clustering; fuzzy C-means; kernel-based fuzzy clustering; kernelised FCM; machine learning;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:20073093
Filename :
4405613
Link To Document :
بازگشت