DocumentCode :
1014545
Title :
The use of curl-conforming basis functions for the magnetic-field integral equation
Author :
Ergul, Ozgur ; Gurel, Levent
Author_Institution :
Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey
Volume :
54
Issue :
7
fYear :
2006
fDate :
7/1/2006 12:00:00 AM
Firstpage :
1917
Lastpage :
1926
Abstract :
Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming n~×RWG basis and testing functions is introduced for improved current modelling. Implementation details are outlined in the contexts of the method of moments, the fast multipole method, and the multilevel fast multipole algorithm. Based on the examples of electromagnetic modelling of conducting scatterers, it is demonstrated that significant improvement in the accuracy of the MFIE can be obtained by using the curl-conforming n~×RWG functions.
Keywords :
Galerkin method; current distribution; magnetic field integral equations; method of moments; MFIE; RWG; curl-conforming function; divergence-conforming Rao-Wilton-Glisson function; magnetic-field integral-equation formulation; method of moments; multilevel fast multipole algorithm; planar triangulation; surface current distribution; Current distribution; Electromagnetic modeling; Electromagnetic scattering; Geometry; Impedance; Integral equations; MLFMA; Moment methods; Testing; Transmission line matrix methods; Fast multipole method; integral equations; magnetic-field integral equation (MFIE); method of moments (MoM);
fLanguage :
English
Journal_Title :
Antennas and Propagation, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-926X
Type :
jour
DOI :
10.1109/TAP.2006.877159
Filename :
1650389
Link To Document :
بازگشت