Title :
Statistical Hough Transform
Author_Institution :
Dept. of Stat., Trinity Coll. Dublin, Dublin
Abstract :
The standard Hough transform is a popular method in image processing and is traditionally estimated using histograms. Densities modeled with histograms in high dimensional space and/or with few observations, can be very sparse and highly demanding in memory. In this paper, we propose first to extend the formulation to continuous kernel estimates. Second, when dependencies in between variables are well taken into account, the estimated density is also robust to noise and insensitive to the choice of the origin of the spatial coordinates. Finally, our new statistical framework is unsupervised (all needed parameters are automatically estimated) and flexible (priors can easily be attached to the observations). We show experimentally that our new modeling encodes better the alignment content of images.
Keywords :
Hough transforms; object detection; statistical analysis; continuous kernel estimate; image processing; line detection; spatial domain coordinate; statistical Hough transform; Hough transform; Image Processing and Computer Vision; Radon transform; Transform methods; kernel probability density function; line detection.; uncertainty;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2008.288