Title :
An Indexed-Scaling Pipelined FFT Processor for OFDM-Based WPAN Applications
Author :
Chen, Yuan ; Tsao, Yu-Chi ; Lin, Yu-Wei ; Lin, Chin-Hung ; Lee, Chen-Yi
Author_Institution :
Nat. Chiao Tung Univ., Hsinchu
Abstract :
In this brief, a high-throughput and low-complexity fast Fourier transform (FFT) processor for wideband orthogonal frequency division multiplexing communication systems is presented. A new indexed-scaling method is proposed to reduce both the critical-path delay and hardware cost by employing shorter wordlength. Together with the mixed-radix multipath delay feedback structure, the proposed FFT processor can achieve very high throughput with low hardware cost. From analysis, it is shown that the proposed indexed-scaling method can save at least 11% memory utilizations compared to other state-of-the-art scaling algorithms. Also, a test chip of a 1.2 Gsample/s 2048-point FFT processor has been designed using UMC 90-nm 1P9M process with a core area of 0.97 mm2. The signal-to-quantization-noise ratio (SQNR) performance of this test chip is over 32.7 dB to support 16-QAM modulation and the power consumption is about 117 mW at 300 MHz. Compared to the fixed-point FFT processors, about 26% area and 28% power can be saved under the same throughput and SQNR specifications.
Keywords :
OFDM modulation; fast Fourier transforms; personal area networks; pipeline processing; quadrature amplitude modulation; 16-QAM modulation; OFDM communication system; UMC 90-nm 1P9M process; WPAN application; fast Fourier transform; frequency 300 MHz; indexed-scaling pipelined FFT processor; mixed-radix multipath delay feedback structure; quadrature amplitude modulation; size 90 nm; test chip; wideband orthogonal frequency division multiplexing; wireless personal area network; Convergent block floating point (CBFP); data scaling; fast Fourier transform (FFT); indexed-scaling; mixed- radix multipath delay feedback (MRMDF); orthogonal frequency-division multiplexing (OFDM); wireless personal area network (WPAN);
Journal_Title :
Circuits and Systems II: Express Briefs, IEEE Transactions on
DOI :
10.1109/TCSII.2007.910771