Title :
Recent progress toward a manufacturable polycrystalline SiC surface micromachining technology
Author :
Gao, Di ; Wijesundara, Muthu B J ; Carraro, Carlo ; Howe, Roger T. ; Maboudian, Roya
Author_Institution :
Dept. of Chem. Eng., Univ. of California, Berkeley, CA, USA
Abstract :
In this paper, we present results of recent research from our laboratory directed toward a manufacturable SiC surface micromachining technology for microelectromechanical systems (MEMS) applications. These include the development of a low-pressure chemical vapor deposition and in situ doping processes for silicon carbide (SiC) films at relatively low temperatures, as well as the development of selective dry etching processes for SiC using nonmetallic masking materials. Doped polycrystalline SiC films are deposited at 800°C by using a precursor 1,3-disilabutane and dopant gas NH3, with the minimum resistivity of 26 mΩ·cm. Dry etching for SiC and its selectivity toward silicon dioxide and silicon nitride masking materials are investigated using SF6/O2, HBr, and HBr/Cl2 transformer coupled plasmas. The etch rate, etch selectivity, and etch profile are characterized and compared for each etch chemistry. By combining the LPCVD and dry etching process with conventional microfabrication technologies, a multiuser SiC MEMS process is developed.
Keywords :
chemical vapour deposition; chlorine; hydrogen compounds; low-temperature techniques; micromachining; micromechanical devices; nitrogen compounds; oxygen; silicon compounds; sputter etching; sulphur compounds; wide band gap semiconductors; 1,3-disilabutane; 800 C; Cl2; HBr; NH3; O2; SF6; SiC; dopant gas; doped polycrystalline films; etch chemistry; etch profile; etch rate; etch selectivity; in situ doping processes; low-pressure chemical vapor deposition; microelectromechanical systems; microfabrication technologies; multiuser MEMS process; nonmetallic masking materials; polycrystalline SiC surface micromachining technology; reactive ion etching; selective dry etching processes; silicon carbide films; silicon dioxide; silicon nitride; transformer coupled plasmas; Chemical technology; Chemical vapor deposition; Dry etching; Laboratories; Microelectromechanical systems; Micromachining; Micromechanical devices; Plasma chemistry; Pulp manufacturing; Silicon carbide; Chemical vapor deposition; MEMS; SiC; microelectromechanical systems; reactive ion etching; silicon carbide; surface micromachining;
Journal_Title :
Sensors Journal, IEEE
DOI :
10.1109/JSEN.2004.828859