• DocumentCode
    1027253
  • Title

    On classification with empirically observed statistics and universal data compression

  • Author

    Ziv, Jacob

  • Author_Institution
    Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel
  • Volume
    34
  • Issue
    2
  • fYear
    1988
  • fDate
    3/1/1988 12:00:00 AM
  • Firstpage
    278
  • Lastpage
    286
  • Abstract
    Classification with empirically observed statistics is studied for finite alphabet sources. Efficient universal discriminant functions are described and shown to be related to universal data compression. It is demonstrated that if one of the probability measure of the two classes is not known, it is still possible to define a universal discrimination function which performs as the optimal (likelihood ratio) discriminant function (which can be evaluated only if the probability measures of the two classes are available). If both of the probability measures are not available but training vectors from at least one of the two classes are available, it is demonstrated that no discriminant function can perform efficiency of the length of the training vectors does not grow at least linearly with the length of the classified vector. A universal discriminant function is introduced and shown to perform efficiently when the length of the training vectors grows linearly with the length of the classified sequence, in the sense that it yields an error exponent that is arbitrarily close to that of the optimal discriminant function
  • Keywords
    data compression; information theory; probability; classification; empirically observed statistics; finite alphabet sources; probability; training vectors; universal data compression; universal discriminant functions; Data compression; Fading; Length measurement; Markov processes; Out of order; Performance evaluation; Probability; Statistics;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.2636
  • Filename
    2636