A numerical technique is presented to optimize the performance of arbitrary antenna arrays under realistic conditions. An experimental-computational algorithm is formulated in which

-dimensional minimization methods are applied to measured data obtained from the antenna array. A numerical update formula is used to induce partial derivative information without requiring special perturbations of the array parameters. The algorithm provides a new design for the antenna array, and the method proceeds in an iterative fashion. Test case results are presented showing the effectiveness of the algorithm.