Title :
Singular higher order complete vector bases for finite methods
Author :
Graglia, Roberto D. ; Lombardi, Guido
Author_Institution :
Dipt. di Elettronica, Politecnico di Torino, Italy
fDate :
7/1/2004 12:00:00 AM
Abstract :
This paper presents new singular curl- and divergence-conforming vector bases that incorporate the edge conditions. Singular bases complete to arbitrarily high order are described in a unified and consistent manner for curved triangular and quadrilateral elements. The higher order basis functions are obtained as the product of lowest order functions and Silvester-Lagrange interpolatory polynomials with specially arranged arrays of interpolation points. The completeness properties are discussed and these bases are proved to be fully compatible with the standard, high-order regular vector bases used in adjacent elements. The curl (divergence) conforming singular bases guarantee tangential (normal) continuity along the edges of the elements allowing for the discontinuity of normal (tangential) components, adequate modeling of the curl (divergence), and removal of spurious modes (solutions). These singular high-order bases should provide more accurate and efficient numerical solutions of both surface integral and differential problems. Sample numerical results confirm the faster convergence of these bases on wedge problems.
Keywords :
Galerkin method; electromagnetic wave scattering; finite element analysis; method of moments; polynomials; FEM; Galerkin method; MoM; Silvester-Lagrange interpolatory polynomials; electromagnetic scattering; finite element methods; finite methods; higher order basis functions; method of moments; numerical analysis; singular curl-divergence-conforming vector bases; Convergence of numerical methods; Electromagnetic analysis; Electromagnetic modeling; Electromagnetic scattering; Finite element methods; Interpolation; Moment methods; Numerical analysis; Polynomials; Sparse matrices; Electromagnetic analysis; FEMs; Galerkin method; MoM; electromagnetic scattering; finite element methods; high-order modeling; method of moments; numerical analysis; singular vector functions incorporating edge conditions; wedges;
Journal_Title :
Antennas and Propagation, IEEE Transactions on
DOI :
10.1109/TAP.2004.831292