DocumentCode :
1031878
Title :
Adaptive algorithms for constrained ARMA signals in the presence of noise
Author :
Nehorai, Arye ; Stoica, Peter
Author_Institution :
Dept. of Electr. Eng., Yale Univ., New Haven, CT, USA
Volume :
36
Issue :
8
fYear :
1988
fDate :
8/1/1988 12:00:00 AM
Firstpage :
1282
Lastpage :
1291
Abstract :
A family of algorithms is developed for adaptive parameter estimation of constrained autoregressive moving-average (ARMA) signals in the presence of noise. These algorithms utilize a priori information about the signal´s properties, such as its spectral type (for example, low-pass, bandpass, etc.) or a spatial-domain characteristic. Special applications include modeling of autoregressions (AR) and signals of known spectral type in the presence of noise, signal deconvolution, image deblurring and multipath parameter estimation. Selected results of simulations are included to demonstrate the performance of the algorithms
Keywords :
noise; parameter estimation; signal processing; a priori information; adaptive algorithms; adaptive parameter estimation; autoregressive moving average signals; constrained ARMA signals; image deblurring; multipath parameter estimation; noise; signal deconvolution; spatial-domain characteristic; spectral type; Adaptive algorithm; Deconvolution; Image restoration; Integrated circuit noise; Least squares methods; Newton method; Noise measurement; Pollution measurement; Recursive estimation; White noise;
fLanguage :
English
Journal_Title :
Acoustics, Speech and Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
0096-3518
Type :
jour
DOI :
10.1109/29.1656
Filename :
1656
Link To Document :
بازگشت