DocumentCode :
1037810
Title :
An Efficient Hybrid Music Recommender System Using an Incrementally Trainable Probabilistic Generative Model
Author :
Yoshii, Kazuyoshi ; Goto, Masataka ; Komatani, Kazunori ; Ogata, Tetsuya ; Okuno, Hiroshi G.
Author_Institution :
Dept. of Intell. Sci. & Technol., Kyoto Univ., Kyoto
Volume :
16
Issue :
2
fYear :
2008
Firstpage :
435
Lastpage :
447
Abstract :
This paper presents a hybrid music recommender system that ranks musical pieces while efficiently maintaining collaborative and content-based data, i.e., rating scores given by users and acoustic features of audio signals. This hybrid approach overcomes the conventional tradeoff between recommendation accuracy and variety of recommended artists. Collaborative filtering, which is used on e-commerce sites, cannot recommend nonbrated pieces and provides a narrow variety of artists. Content-based filtering does not have satisfactory accuracy because it is based on the heuristics that the user´s favorite pieces will have similar musical content despite there being exceptions. To attain a higher recommendation accuracy along with a wider variety of artists, we use a probabilistic generative model that unifies the collaborative and content-based data in a principled way. This model can explain the generative mechanism of the observed data in the probability theory. The probability distribution over users, pieces, and features is decomposed into three conditionally independent ones by introducing latent variables. This decomposition enables us to efficiently and incrementally adapt the model for increasing numbers of users and rating scores. We evaluated our system by using audio signals of commercial CDs and their corresponding rating scores obtained from an e-commerce site. The results revealed that our system accurately recommended pieces including nonrated ones from a wide variety of artists and maintained a high degree of accuracy even when new users and rating scores were added.
Keywords :
audio signal processing; content-based retrieval; music; statistical distributions; acoustic features; audio signals; collaborative data; content-based data; hybrid music recommender system; incrementally trainable probabilistic generative model; probability distribution; rating scores; Collaboration; Educational technology; Filtering; Hybrid power systems; Management training; Multiple signal classification; Music information retrieval; Probability distribution; Recommender systems; Signal generators; Aspect model; hybrid collaborative and content-based recommendation; incremental training; music recommender system; probabilistic generative model;
fLanguage :
English
Journal_Title :
Audio, Speech, and Language Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1558-7916
Type :
jour
DOI :
10.1109/TASL.2007.911503
Filename :
4432655
Link To Document :
بازگشت