DocumentCode :
1038210
Title :
A comparative study of pattern recognition techniques for quality evaluation of telecommunications software
Author :
Khoshgoftaar, Taghi M. ; Lanning, David L. ; Pandya, Abhijit S.
Author_Institution :
Coll. of Eng., Florida Atlantic Univ., Boca Raton, FL, USA
Volume :
12
Issue :
2
fYear :
1994
fDate :
2/1/1994 12:00:00 AM
Firstpage :
279
Lastpage :
291
Abstract :
The extreme risks of software faults in the telecommunications environment justify the costs of data collection and modeling of software quality. Software quality models based on data drawn from past projects can identify key risk or problem areas in current similar development efforts. Once these problem areas are identified, the project management team can take actions to reduce the risks. Studies of several telecommunications systems have found that only 4-6% of the system modules were complex [LeGall et al. 1990]. Since complex modules are likely to contain a large proportion of a system´s faults, the approach of focusing resources on high-risk modules seems especially relevant to telecommunications software development efforts. A number of researchers have recognized this, and have applied modeling techniques to isolate fault-prone or high-risk program modules. A classification model based upon discriminant analytic techniques has shown promise in performing this task. The authors introduce a neural network classification model for identifying high-risk program modules, and compare the quality of this model with that of a discriminant classification model fitted with the same data. They find that the neural network techniques provide a better management tool in software engineering environments. These techniques are simpler, produce more accurate models, and are easier to use
Keywords :
neural nets; pattern recognition; software quality; software reliability; telecommunication network management; telecommunications computing; discriminant classification model; high-risk modules; high-risk program modules; management tool; neural network classification model; pattern recognition techniques; quality evaluation; software development; software engineering environments; software faults; software quality; telecommunications software; Costs; Engineering management; Environmental management; Neural networks; Pattern recognition; Performance analysis; Programming; Project management; Software engineering; Software quality;
fLanguage :
English
Journal_Title :
Selected Areas in Communications, IEEE Journal on
Publisher :
ieee
ISSN :
0733-8716
Type :
jour
DOI :
10.1109/49.272878
Filename :
272878
Link To Document :
بازگشت