Title :
Linear minimax regret estimation of deterministic parameters with bounded data uncertainties
Author :
Eldar, Yonina C. ; Ben-Tal, Aharon ; Nemirovski, Arkadi
Author_Institution :
Dept. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa, Israel
Abstract :
We develop a new linear estimator for estimating an unknown parameter vector x in a linear model in the presence of bounded data uncertainties. The estimator is designed to minimize the worst-case regret over all bounded data vectors, namely, the worst-case difference between the mean-squared error (MSE) attainable using a linear estimator that does not know the true parameters x and the optimal MSE attained using a linear estimator that knows x. We demonstrate through several examples that the minimax regret estimator can significantly increase the performance over the conventional least-squares estimator, as well as several other least-squares alternatives.
Keywords :
eigenvalues and eigenfunctions; mean square error methods; minimax techniques; parameter estimation; signal processing; bounded data uncertainties; deterministic parameters estimation; eigenvector matrix; linear minimax regret estimation; mean-squared error; signal processing; worst-case difference; worst-case regret; Error analysis; Estimation error; Gaussian processes; Helium; Industrial engineering; Minimax techniques; Parameter estimation; Robustness; Uncertainty; Vectors; Deterministic parameter estimation; linear estimation; mean squared error bounded data uncertainties estimation; minimax estimation; regret;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2004.831144