DocumentCode :
1040608
Title :
An alternate numerical solution to the linear quadratic problem
Author :
Peres, P.L.D. ; Geromel, J.C.
Author_Institution :
LAC-DT/Fac. of Electr. Eng., Univ. Estadual de Campinas, Sao Paulo, Brazil
Volume :
39
Issue :
1
fYear :
1994
fDate :
1/1/1994 12:00:00 AM
Firstpage :
198
Lastpage :
202
Abstract :
This note proposes a new method, based on convex programming, for solving the linear quadratic problem (LQP) directly on the parameter space generated by the feedback control gain. All stabilizing controllers are mapped into a convex set; the problem is then formulated as a minimization of a linear function over this convex set. Its optimal solution furnishes, under certain conditions, the same feedback control gain obtained from the classical Riccati equation. Generalizations to decentralized control and output feedback control design are included. The theory is illustrated by some numerical examples
Keywords :
convex programming; feedback; linear systems; numerical analysis; optimal control; stability; convex programming; convex set; decentralized control; feedback control gain; linear function minimization; linear quadratic control; numerical solution; output feedback control design; stabilizing controllers; Control design; Control systems; Distributed control; Feedback control; Linear feedback control systems; Linear matrix inequalities; Optimal control; Output feedback; Riccati equations; Sun;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.273368
Filename :
273368
Link To Document :
بازگشت