DocumentCode :
104066
Title :
Revisiting Inter-Genre Similarity
Author :
Sturm, Bob L. ; Gouyon, Fabien
Author_Institution :
Audio Anal. Lab., Aalborg Univ. Copenhagen, Copenahgen, Denmark
Volume :
20
Issue :
11
fYear :
2013
fDate :
Nov. 2013
Firstpage :
1050
Lastpage :
1053
Abstract :
We revisit the idea of “inter-genre similarity” (IGS) for machine learning in general, and music genre recognition in particular. We show analytically that the probability of error for IGS is higher than naive Bayes classification with zero-one loss (NB). We show empirically that IGS does not perform well, even for data that satisfies all its assumptions.
Keywords :
Bayes methods; error statistics; learning (artificial intelligence); music; pattern classification; IGS; error probability; intergenre similarity; machine learning; music genre recognition; naive Bayes classification; zero-one loss; Abstracts; Indexes; Materials; Niobium; Pattern recognition; Training; Vectors; Content-based processing and music information retrieval; pattern recognition and classification;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2013.2280031
Filename :
6587787
Link To Document :
بازگشت