DocumentCode :
104133
Title :
Advances in Multi-GPU Smoothed Particle Hydrodynamics Simulations
Author :
Rustico, Eugenio ; Bilotta, Giuseppe ; Herault, Alexis ; Del Negro, Ciro ; Gallo, G.
Author_Institution :
Dept. of Math. & Inf., Univ. of Catania, Catania, Italy
Volume :
25
Issue :
1
fYear :
2014
fDate :
Jan. 2014
Firstpage :
43
Lastpage :
52
Abstract :
We present a multi-GPU version of GPUSPH, a CUDA implementation of fluid-dynamics models based on the smoothed particle hydrodynamics (SPH) numerical method. The SPH is a well-known Lagrangian model for the simulation of free-surface fluid flows; it exposes a high degree of parallelism and has already been successfully ported to GPU. We extend the GPU-based simulator to run simulations on multiple GPUs simultaneously, to obtain a gain in speed and overcome the memory limitations of using a single device. The computational domain is spatially split with minimal overlapping and shared volume slices are updated at every iteration of the simulation. Data transfers are asynchronous with computations, thus completely covering the overhead introduced by slice exchange. A simple yet effective load balancing policy preserves the performance in case of unbalanced simulations due to asymmetric fluid topologies. The obtained speedup factor (up to 4.5x for 6 GPUs) closely follows the expected one (5x for 6 GPUs) and it is possible to run simulations with a higher number of particles than would fit on a single device. We use the Karp-Flatt metric to formally estimate the overall efficiency of the parallelization.
Keywords :
computational fluid dynamics; flow simulation; graphics processing units; hydrodynamics; iterative methods; parallel architectures; CUDA implementation; GPU-based simulator; GPUSPH; Karp-Flatt metric; Lagrangian model; SPH numerical method; asymmetric fluid topologies; computational domain; data transfers; fluid-dynamics models; free-surface fluid flow simulations; iterative methods; multi-GPU smoothed particle hydrodynamics simulations; parallelization efficiency; Computational modeling; Graphics processing units; Kernel; Load management; Load modeling; Numerical models; Parallel processing; CUDA; GPU; HPC; SPH; fluid dynamics; load balancing; multi-GPU; numerical simulations; parallel computing;
fLanguage :
English
Journal_Title :
Parallel and Distributed Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9219
Type :
jour
DOI :
10.1109/TPDS.2012.340
Filename :
6392827
Link To Document :
بازگشت