Title :
Statistical Properties of Horizontally Oriented Plates in Optically Thick Clouds From Satellite Observations
Author :
Chen Zhou ; Ping Yang ; Dessler, A.E. ; Faming Liang
Author_Institution :
Dept. of Atmos. Sci., Texas A&M Univ., College Station, TX, USA
Abstract :
Specular reflection from horizontally oriented plates (HOPs) has significant effects on lidar backscatter. The intensity of specular reflection from HOPs is high in warm mixed-phase clouds and low in cold ice clouds. The theoretical simulations of lidar backscatter and depolarization ratio are consistent with spaceborne measurements for optically thick mixed-phase and ice clouds if an equivalent percentage of HOPs of 0.08%-0.3% is assumed. Based on the joint probability density function of the attenuated backscatter and depolarization ratio observed by the Cloud-Aerosol Lidar with Orthogonal Polarization aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations platform, it is estimated that HOPs exist in approximately 60% of optically thick (τ > 3) ice and mixed-phase cloud layers. The cloud-layer temperature is the primary factor affecting the distribution of HOPs. Specifically, HOPs exist in approximately 88% of optically thick ice and mixed-phase cloud layers warmer than -30°C, in approximately 84% of ice and mixed-phase cloud layers between -30°C and -45°C, and in approximately 29% of cold ice cloud layers below -45°C.
Keywords :
atmospheric optics; backscatter; clouds; optical radar; remote sensing by laser beam; Cloud-Aerosol Lidar; Infrared Pathfinder Satellite Observations platform; cold ice clouds; depolarization ratio; horizontally oriented plates; joint probability density function; lidar backscatter; optically thick clouds; satellite observations; specular reflection; warm mixed phase clouds; Backscatter; Clouds; Crystals; Ice; Integrated optics; Laser radar; Optical attenuators; Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO); ice cloud particles; ice crystal orientation; radiative transfer;
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
DOI :
10.1109/LGRS.2012.2227451