DocumentCode :
1044084
Title :
A conditional entropy power inequality for dependent variables
Author :
Johnson, Oliver
Author_Institution :
Centre for Math. Sci., Cambridge Univ., UK
Volume :
50
Issue :
8
fYear :
2004
Firstpage :
1581
Lastpage :
1583
Abstract :
We provide a condition under which a version of Shannon´s entropy power inequality will hold for dependent variables. We first provide a Fisher information inequality extending that found in the independent case. The key ingredients are a conditional expectation representation for the score function of a sum, and the de Bruijn identity which relates entropy and Fisher information.
Keywords :
entropy; information theory; Fisher information inequality; Shannons entropy; conditional entropy power inequality; de Bruijn identity; dependent variables; score function; Convolution; Cramer-Rao bounds; Entropy; Integral equations; Random variables; Entropy power inequality; Fisher information;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2004.831790
Filename :
1317107
Link To Document :
بازگشت