DocumentCode :
1045208
Title :
Continuous LTI Systems Defined on L^{p} Functions and {cal D}_{L^{p}}^{\\prime } Distributions:
Author :
Ciampa, Maurizio ; Franciosi, Marco ; Poletti, Mario
Author_Institution :
Dept. of Appl. Math., Univ. of Pisa, Pisa
Volume :
55
Issue :
6
fYear :
2008
fDate :
7/1/2008 12:00:00 AM
Firstpage :
1711
Lastpage :
1721
Abstract :
In this paper, it is shown that every continuous linear time-invariant system L defined either on L p or on D´L p (1lesplesinfin) admits an impulse response DeltaisinD´L p´ (1lesp´lesinfin, 1/p+1/p´=1). Schwartz´ extension to D´L p distributions of the usual notion of convolution product for L p functions is used to prove that (apart from some restrictions for p=infin), for every f either in L p or in D´L p, we have L(f)=Delta*f. Perspectives of applications to linear differential equations are shown by one example.
Keywords :
convolution; linear differential equations; transient response; Convolution; continuous LTI systems; impulse response; linear differential equations; linear time-invariant system; Continuous-time signals; continuous-time systems; convolution; impulse response; not given; signal processing;
fLanguage :
English
Journal_Title :
Circuits and Systems I: Regular Papers, IEEE Transactions on
Publisher :
ieee
ISSN :
1549-8328
Type :
jour
DOI :
10.1109/TCSI.2008.916697
Filename :
4437501
Link To Document :
بازگشت