Title :
Models and Algorithms for Tracking of Maneuvering Objects Using Variable Rate Particle Filters
Author :
Godsill, Simon J. ; Vermaak, Jaco ; Ng, William ; Li, Jack F.
Author_Institution :
Cambridge Univ., Cambridge
fDate :
5/1/2007 12:00:00 AM
Abstract :
Standard algorithms in tracking and other state-space models assume identical and synchronous sampling rates for the state and measurement processes. However, real trajectories of objects are typically characterized by prolonged smooth sections, with sharp, but infrequent, changes. Thus, a more parsimonious representation of a target trajectory may be obtained by direct modeling of maneuver times in the state process, independently from the observation times. This is achieved by assuming the state arrival times to follow a random process, typically specified as Markovian, so that state points may be allocated along the trajectory according to the degree of variation observed. The resulting variable dimension state inference problem is solved by developing an efficient variable rate particle filtering algorithm to recursively update the posterior distribution of the state sequence as new data becomes available. The methodology is quite general and can be applied across many models where dynamic model uncertainty occurs on-line. Specific models are proposed for the dynamics of a moving object under internal forcing, expressed in terms of the intrinsic dynamics of the object. The performance of the algorithms with these dynamical models is demonstrated on several challenging maneuvering target tracking problems in clutter.
Keywords :
Markov processes; aircraft; marine radar; marine vehicles; particle filtering (numerical methods); radar clutter; radar tracking; random processes; target tracking; Markovian process; aircraft vehicle; clutter; dynamic model uncertainty; maneuvering object tracking; marine vehicle; moving object dynamics; random process; state-space model; target tracking; target trajectory representation; variable rate particle filtering algorithm; Filtering algorithms; Heuristic algorithms; Measurement standards; Particle filters; Particle tracking; Random processes; Sampling methods; Target tracking; Trajectory; Uncertainty; Bayesian model selection; discrete event systems; maneuvering target tracking; marked point processes; piecewise-deterministic processes; semi-Markov models; sequential state estimation; smoothing; variable rate particle filters;
Journal_Title :
Proceedings of the IEEE
DOI :
10.1109/JPROC.2007.894708