DocumentCode :
1046382
Title :
Radiation Effects on InGaN Quantum Wells and GaN Simultaneously Probed by Ion Beam-Induced Luminescence
Author :
Tringe, J.W. ; Conway, A.M. ; Felter, T.E. ; Chan, W. J Moberly ; Castelaz, J. ; Lordi, V. ; Xia, Y. ; Stevens, C.G. ; Wetzel, C.
Author_Institution :
Lawrence Livermore Nat. Lab., Livermore, CA
Volume :
55
Issue :
6
fYear :
2008
Firstpage :
3633
Lastpage :
3637
Abstract :
InGaN quantum well structures on GaN epilayers were exposed to 500 keV alpha particles to fluences above 1014 cm2 to probe the relative radiation tolerance of the epilayer and wells. Performance was estimated by the intensity of ion-beam induced luminescence. Two separate types of quantum well structures emitted at 470 and 510 nm prior to irradiation, and only small wavelength shifts were observed even with the highest alpha fluences. Complementary cathodoluminescence experiments showed that luminescence in the quantum wells is strongly influenced by charges injected deep into the GaN epilayer. The 500 keV alpha penetration depth was ~ 1 mum, so that defects were created at a faster rate in GaN compared to InGaN as alpha particles slowed and stopped within a minority carrier diffusion length of the quantum wells. However, the rate of luminescent decay was similar for both materials. Taken together with the cathodoluminescence data, this ion-beam induced luminescence comparison indicates that the quantum well luminescence decay rate is dominated by radiation-induced defects in the GaN epilayer. InGaN quantum wells are then demonstrated to be not more than a factor of ten more radiation sensitive than GaN, and may be substantially less sensitive than this upper bound.
Keywords :
III-V semiconductors; carrier lifetime; cathodoluminescence; charge injection; gallium compounds; indium compounds; ion beam effects; light emitting diodes; photoluminescence; semiconductor quantum wells; InGaN; alpha particles; carrier diffusion length; cathodoluminescence; charge injection; electron volt energy 500 keV; ion beam-induced luminescence; light emitting diode; radiation effects; radiation tolerance; radiation-induced defects; semiconductor epilayers; semiconductor quantum well structures; wavelength 470 nm; wavelength 510 nm; Alpha particles; Electrical resistance measurement; Gallium nitride; Laboratories; Light emitting diodes; Luminescence; Probes; Protons; Radiation effects; Substrates; Alpha particle; InGaN; light-emitting diode; quantum well; radiation;
fLanguage :
English
Journal_Title :
Nuclear Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9499
Type :
jour
DOI :
10.1109/TNS.2008.2006169
Filename :
4723825
Link To Document :
بازگشت