The design and ultimate performance of an extremely low-frequency (ELF) superconducting quantum interference device (SQUID) antenna that is mounted in a submarine-towed buoy depends critically on the motion spectrum of the buoy. Motion spectrum measurements from near dc to 100 Hz were conducted on a hydrodynamically stabilized buoy while being towed in the 650-m towing basin of the David Taylor Naval Ship Research and Development Center, Carderock, MD. The spectra show that the angular motion of the buoy can be held to

rad/

or less within the ELF receiver bandwidth of 30-130 Hz, as long as properly streamlined fairings are used on the hydrofoil trailing edges in order to prevent oscillations from vortex shedding. Low-frequency oscillations of the buoy were

rad/

or less for frequencies down to 0.025 Hz. This performance of the buoy is sufficient to permit it to serve as a towed platform for the NRL prototype SQUID receiver.