Title :
Adaptive averaging for improved SNR in real-time coronary artery MRI
Author :
Sussman, Marshall S. ; Robert, Normand ; Wright, Graham A.
Author_Institution :
Dept. of Med. Biophys., Univ. of Toronto, Ont., Canada
Abstract :
A technique has been developed for combining a series of low signal-to-noise ratio (SNR) real-time magnetic resonance (MR) images to produce composite images with high SNR and minimal artifact in the presence of motion. The main challenge is identifying a set of real-time images with sufficiently small systematic differences to avoid introducing significant artifact into the composite image. To accomplish this task, one must: 1) identify images identical within the limits of noise; 2) detect systematic errors within such images with sufficient sensitivity. These steps are achieved by evaluating the correlation coefficient (CC) between regions in prospective images and a template containing the anatomy of interest. Images identical within noise are selected by comparing the measured CC values to the theoretical distribution expected due to noise. Sensitivity for systematic error depends on the SNR of the CC(=SNRCCmax), which in turn depends on the noise, and the template size and structure. By varying the template size, SNRCCmax may be altered. Experiments on phantoms and coronary artery images demonstrate that the SNRCCmax necessary to avoid introducing significant artifact varies with the target composite SNR. The future potential of this technique is demonstrated on high-resolution (∼0.9 mm), reduced field-of-view real-time coronary images.
Keywords :
biomedical MRI; blood vessels; cardiovascular system; image resolution; medical image processing; phantoms; adaptive averaging; composite images; correlation coefficients; high-resolution image; improved signal-to-noise ratio; minimal artifact; phantoms; real-time coronary artery MRI; reduced field-of-view real-time coronary images; systematic error detection; Algorithm design and analysis; Arteries; Biomedical imaging; Biophysics; Image analysis; Magnetic resonance; Magnetic resonance imaging; Real time systems; Signal to noise ratio; Spatial resolution; Algorithms; Arteries; Artifacts; Coronary Vessels; Feedback; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Magnetic Resonance Imaging; Motion; Numerical Analysis, Computer-Assisted; Online Systems; Pattern Recognition, Automated; Phantoms, Imaging; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted; Stochastic Processes; Subtraction Technique;
Journal_Title :
Medical Imaging, IEEE Transactions on
DOI :
10.1109/TMI.2004.828677