DocumentCode :
1049788
Title :
Sensitivity of m = 0 Instability to Different Resistivity Models
Author :
Angelova, Milena A. ; Bauer, Bruno S. ; Siemon, Richard E. ; Lindemuth, Irvin R. ; Makhin, Volodymyr
Author_Institution :
Dept. of Phys., Nevada Univ., Reno, NV
Volume :
36
Issue :
1
fYear :
2008
Firstpage :
37
Lastpage :
43
Abstract :
Instabilities can affect the quality of flux compression and other high-current experiments. The modeling of such experiments involves a number of numerical difficulties. One such difficulty is the selection of proper material property models. This paper investigates the effect of different electrical resistivity models on the development of the m = 0 instability in a single cylindrical conductor driven by a current typical of the Atlas generator. The nonlinear development of this magnetohydrodynamic (MHD) instability can lead to current disruption. An important challenge for modeling is to predict the maximum magnetic field on a rod surface that can be obtained prior to disruption. This problem can also be generalized to the more complicated moving liner problem. A series of 2-D MHD simulations was performed with the state-of-the-art MHRDR code to conduct a sensitivity study. Results indicate that the development and growth of m = 0 instability is sensitive to the resistivity models used. Furthermore, it was observed that models with lower values of resistivity near the metal-insulator transition produce higher growth-rate sausage instability.
Keywords :
electrical resistivity; pinch effect; plasma instability; plasma magnetohydrodynamics; plasma simulation; plasma transport processes; 2D MHD simulation; Atlas generator; current disruption; electrical resistivity model; flux compression; high-current experiment; magnetohydrodynamic instability; metal-insulator transition; moving liner problem; sausage instability; single cylindrical conductor; Megagauss fields; plasma instabilities; plasma pinch; plasma simulations;
fLanguage :
English
Journal_Title :
Plasma Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0093-3813
Type :
jour
DOI :
10.1109/TPS.2007.914690
Filename :
4441769
Link To Document :
بازگشت