DocumentCode :
1050099
Title :
Evolutionary Benchmark Subsetting
Author :
Jin, Zhanpeng ; Cheng, Allen C.
Author_Institution :
Univ. of Pittsburgh, Pittsburgh, PA
Volume :
28
Issue :
6
fYear :
2008
Firstpage :
20
Lastpage :
36
Abstract :
To improve simulation efficiency and relieve burdened benchmarking efforts, this research proposes a survival-of-the-fittest evolutionary methodology. The goal is to subset any given benchmark suite based on its inherent workload characteristics, desired workload space coverage, and total execution time. Given a user-specified workload space coverage threshold, the proposed technique can systematically yield the "fittest" time-efficient benchmark subset.
Keywords :
benchmark testing; computer architecture; evolutionary computation; benchmark suite; evolutionary benchmark subsetting; fittest time-efficient benchmark subset; survival-of-the-fittest evolutionary; user-specified workload space coverage threshold; Biological information theory; Biological system modeling; Computational modeling; Energy consumption; Microarchitecture; Process design; Time factors;
fLanguage :
English
Journal_Title :
Micro, IEEE
Publisher :
ieee
ISSN :
0272-1732
Type :
jour
DOI :
10.1109/MM.2008.87
Filename :
4731172
Link To Document :
بازگشت