DocumentCode :
10505
Title :
Fuzzy Classifiers Tuning Through an Adaptive Memetic Algorithm
Author :
Murcia, Cristhian ; Bonilla, G. ; Melgarejo, Miguel
Author_Institution :
Univ. Distrital Francisco Jose de Caldas, Bogota, Colombia
Volume :
12
Issue :
2
fYear :
2014
fDate :
Mar-14
Firstpage :
197
Lastpage :
204
Abstract :
This paper presents a methodological approach for tuning the fuzzy rules of a fuzzy classifier using an adaptive memetic algorithm. The approach is validated over two benchmark problems in terms of classification error and computational effort. In addition, it compares the performance of memetic, genetic and adaptive memetic algorithms over the benchmark problems. These results show a favorable trend towards the tuning of the classifiers through the adaptive memetic perspective.
Keywords :
fuzzy set theory; genetic algorithms; pattern classification; adaptive memetic algorithm; adaptive memetic perspective; classification error; computational effort; fuzzy classifiers tuning; genetic algorithm; methodological approach; Benchmark testing; Breast cancer; Classification algorithms; Fuzzy logic; Media; Memetics; Tuning; Adaptative; Breast Cancer; Classifiers; Fuzzy Systems; Hyiperheuristic; Memetic Algorithm; Wine; local improvement; tuning;
fLanguage :
English
Journal_Title :
Latin America Transactions, IEEE (Revista IEEE America Latina)
Publisher :
ieee
ISSN :
1548-0992
Type :
jour
DOI :
10.1109/TLA.2014.6749538
Filename :
6749538
Link To Document :
بازگشت