DocumentCode :
1051128
Title :
A Continuous Wavelet Transform and Classification Method for Delirium Motoric Subtyping
Author :
Godfrey, Alan ; Conway, Richard ; Leonard, Maeve ; Meagher, David ; Ólaighin, Gearóid M.
Author_Institution :
Sch. of Syst. Eng., Univ. of Reading, Reading
Volume :
17
Issue :
3
fYear :
2009
fDate :
6/1/2009 12:00:00 AM
Firstpage :
298
Lastpage :
307
Abstract :
The usefulness of motor subtypes of delirium is unclear due to inconsistency in subtyping methods and a lack of validation with objective measures of activity. The activity of 40 patients was measured over 24 h with a discrete accelerometer-based activity monitor. The continuous wavelet transform (CWT) with various mother wavelets were applied to accelerometry data from three randomly selected patients with DSM-IV delirium that were readily divided into hyperactive, hypoactive, and mixed motor subtypes. A classification tree used the periods of overall movement as measured by the discrete accelerometer-based monitor as determining factors for which to classify these delirious patients. This data used to create the classification tree were based upon the minimum, maximum, standard deviation, and number of coefficient values, generated over a range of scales by the CWT. The classification tree was subsequently used to define the remaining motoric subtypes. The use of a classification system shows how delirium subtypes can be categorized in relation to overall motoric behavior. The classification system was also implemented to successfully define other patient motoric subtypes. Motor subtypes of delirium defined by observed ward behavior differ in electronically measured activity levels.
Keywords :
accelerometers; neurophysiology; patient diagnosis; wavelet transforms; continuous wavelet transform; delirium motoric subtyping; discrete accelerometer; hyperactive subtype; hypoactive subtype; mixed motor subtype; Activity; classification; continuous wavelet transform; delirium; subtypes; Acceleration; Aged; Delirium; Diagnosis, Computer-Assisted; Female; Humans; Male; Monitoring, Ambulatory; Motor Activity; Movement; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted;
fLanguage :
English
Journal_Title :
Neural Systems and Rehabilitation Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1534-4320
Type :
jour
DOI :
10.1109/TNSRE.2009.2023284
Filename :
5061576
Link To Document :
بازگشت