DocumentCode :
1051784
Title :
A stochastic estimation algorithm with observation averaging
Author :
Juditsky, Anatoli
Author_Institution :
IRISA/INRIA, Rennes, France
Volume :
38
Issue :
5
fYear :
1993
fDate :
5/1/1993 12:00:00 AM
Firstpage :
794
Lastpage :
798
Abstract :
An algorithm for the constrained problem of estimating the regression coefficients is presented. The algorithm is based on the idea of direct averaging of the observations in order to estimate the search direction. It is shown that if the true parameter belongs to the permitted set, then the algorithm delivers asymptotically optimal estimates of the parameter. Finite convergence of the method is proved when the true parameter lies outside the permitted set
Keywords :
estimation theory; observability; parameter estimation; asymptotically optimal estimates; constrained problem; direct averaging; observation averaging; regression coefficients; search direction; stochastic estimation algorithm; true parameter; Algorithm design and analysis; Automatic control; Control systems; Filtering theory; Linear systems; MATLAB; Stochastic processes; Sufficient conditions; Vectors;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.277249
Filename :
277249
Link To Document :
بازگشت