Title :
Two Specific Multiple-Level-Set Models for High-Resolution Remote-Sensing Image Classification
Author :
Ma, Hongchao ; Yang, Yun
Author_Institution :
Sch. of Remote Sensing, Wuhan Univ., Wuhan
fDate :
7/1/2009 12:00:00 AM
Abstract :
This letter adopts level-set methods in order to seek a novel classification strategy in which classification is free of segmentation. A region-driven multiple-level-set (MLS) framework is used to perform very high resolution image classification. Two specific unsupervised classification models are presented. First, from the point of view of feature fusion, an MLS model is suggested by fusing texture features and spectral information (TSMLS model). The model combines spectral information, texture features extracted from the image, and geometrical characteristics of closed curves to achieve effective classification for high-resolution imagery. Second, an alternative MLS model with quadratic image energy (GMMLS model) is presented, which can efficiently integrate the level-set method with Bayesian theory. The model benefits from both the level-set method and Bayesian theory and performs satisfactory classifications. The experiments have demonstrated that our methods can obtain better or similar classification results as compared to support vector machine and Mansouri´s method.
Keywords :
belief networks; feature extraction; geophysical techniques; geophysics computing; image classification; image fusion; image segmentation; remote sensing; support vector machines; Bayesian theory; GMMLS model; Mansouri method; TSMLS model; achieve effective classification; feature extraction; geometrical characteristics; image classification; image fusion; image segmentation; multiple-level-set framework; quadratic image energy; remote-sensing; support vector machine; High-resolution remote-sensing image; image segmentation; multiple level set (MLS); object-oriented classification;
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
DOI :
10.1109/LGRS.2009.2021166