DocumentCode :
1054068
Title :
Robust Kalman filtering with generalized Gaussian measurement noise
Author :
Niehsen, Wolfgang
Author_Institution :
Corporate Res. & Dev., Robert Bosch GmbH, Hildesheim
Volume :
38
Issue :
4
fYear :
2002
fDate :
10/1/2002 12:00:00 AM
Firstpage :
1409
Lastpage :
1412
Abstract :
A recursive state estimator based on adaptive generalized Gaussian approximation of the innovations sequence probability density function is constructed. The proposed state estimator is computationally efficient and robust in the case of heavy-tailed measurement noise. Compared with standard Kalman filtering, significant improvements with respect to stationary mean square error and rate of convergence are achieved.
Keywords :
Gaussian noise; Kalman filters; convergence of numerical methods; mean square error methods; recursive estimation; state estimation; adaptive generalized Gaussian approximation; computational efficiency; convergence rate; measurement noise; recursive state estimator; robust Kalman filtering; sequence probability density function; stationary mean square error; Filtering; Gaussian approximation; Gaussian noise; Kalman filters; Noise measurement; Noise robustness; Probability density function; Recursive estimation; State estimation; Technological innovation;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.2002.1145765
Filename :
1145765
Link To Document :
بازگشت