Title :
Algorithms for Storytelling
Author :
Kumar, Deept ; Ramakrishnan, Naren ; Helm, Richard F. ; Potts, Malcolm
Author_Institution :
Feeva Technol., San Fransisco, CA
fDate :
6/1/2008 12:00:00 AM
Abstract :
We formulate a new data mining problem called storytelling as a generalization of redescription mining. In traditional redescription mining, we are given a set of objects and a collection of subsets defined over these objects. The goal is to view the set system as a vocabulary and identify two expressions in this vocabulary that induce the same set of objects. Storytelling, on the other hand, aims to explicitly relate object sets that are disjoint (and, hence, maximally dissimilar) by finding a chain of (approximate) redescriptions between the sets. This problem finds applications in bioinformatics, for instance, where the biologist is trying to relate a set of genes expressed in one experiment to another set, implicated in a different pathway. We outline an efficient storytelling implementation that embeds the CARTwheels redescription mining algorithm in an A* search procedure, using the former to supply next move operators on search branches to the latter. This approach is practical and effective for mining large data sets and, at the same time, exploits the structure of partitions imposed by the given vocabulary. Three application case studies are presented: a study of word overlaps in large English dictionaries, exploring connections between gene sets in a bioinformatics data set, and relating publications in the PubMed index of abstracts.
Keywords :
data mining; redescription mining generalization; set system; storytelling data mining problem; vocabulary; Data mining; Graph and tree search strategies; Mining methods and algorithms; Retrieval models;
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
DOI :
10.1109/TKDE.2008.32