DocumentCode :
1057
Title :
Detector Performance Characterization for High Sensitivity Single-Photon Imaging
Author :
Walker, Katherine L. ; Cherry, Simon R. ; Mitchell, Gregory S.
Author_Institution :
Dept. of Biomed. Eng., Univ. of California, Davis, Davis, CA, USA
Volume :
61
Issue :
3
fYear :
2014
fDate :
Jun-14
Firstpage :
1118
Lastpage :
1125
Abstract :
We are developing detectors for an un-collimated scanner for very high sensitivity single-photon imaging. The scanner consists of two large, thin, closely spaced, pixelated scintillation detectors of either thallium-doped sodium iodide (NaI(Tl)), sodium-doped cesium iodide (CsI(Na)), or bismuth germanate (BGO). The scintillator arrays are interchangeable to optimize performance for a wide range of isotope energies and imaging subjects. For each scintillator, flood histograms were obtained utilizing test gamma sources: 109Cd, 241Am, 57Co, 133Ba, 137Cs, 22Na, and beta source 32Si. Using a 3 mm thick 21 ×41 NaI(Tl) pixelated array ( 2 mm ×2 mm pixels on a 2.2 mm pitch), read out by two adjacent Hamamatasu H8500 multi-channel photomultiplier tubes (MCPMTs), the energy resolution for 57Co was 12.2% over the center of the MCPMTs and 45.3% for pixels over the gap, with flood histogram peak-to-valley ratios > 6.1 for the center of the MCPMTs and > 4.2 for the gap between the two MCPMTs. The NaI(Tl) detector consistently produced peak-to-valley ratios of > 1.6 in the center of the MCPMTs for all radioisotopes studied. CsI(Na) and BGO detectors had flood histograms of similar quality to NaI(Tl) at intermediate to high-energies, allowing for optimal imaging across a wide energy range. The measured sensitivity for point sources placed 10 mm from the detector approached 35% for low-energy isotopes and all scintillator materials, which results in an expected system sensitivity (two opposing detectors) of ~ 70% for these isotopes. The 5 mm thick BGO arrays had the greatest efficiency for high-energy isotopes due to the increased stopping power of this material. The measured spatial resolution for 99m Tc for the CsI(Na) detector (1.6 mm pitch) was 7.5 mm FWHM at the aluminum entrance window (1.5 mm from scintillator face), decreasing to 15 mm at a distance- of 5 mm from the scintillator face. The NaI(Tl) detector showed similar spatial resolution. This spatial resolution is sufficient for imaging well-localized radiotracer distributions in thin objects, and the very high sensitivity can be used for fast dynamic imaging, or imaging using very low injected doses.
Keywords :
americium; barium; beta-ray detection; beta-ray sources; biomedical equipment; bismuth compounds; cadmium; caesium; caesium compounds; cobalt; doping; gamma-ray detection; image resolution; photomultipliers; radioactive sources; radioactive tracers; radioisotopes; scintillation counters; silicon; single photon emission computed tomography; sodium; sodium compounds; technetium; thallium; 109Cd; 133Ba; 137Cs; 22Na; 241Am; 32Si; 57Co; 99mTc; BGO array efficiency; Bi4Ge3O12; CsI:Na; MCPMT center; MCPMT gap; MCPMT read out; NaI:Tl; adjacent Hamamatasu H8500 multichannel photomultiplier tubes; aluminum entrance window; beta source; bismuth germanate detector; detector performance characterization; distance 10 mm; distance 5 mm; energy resolution; fast dynamic imaging; flood histogram peak-to-valley ratios; flood histogram quality; flood histograms; high sensitivity single-photon imaging; high-energy isotopes; imaging subjects; interchangeable scintillator arrays; isotope energy range; low injected dose imaging; low-energy isotopes; optimal imaging; pixelated scintillation detector development; point sources; radioisotope; scintillator face distance; scintillator materials; sensitivity measurement; size 1.5 mm; size 1.6 mm; size 2 mm; size 2.2 mm; size 3 mm; size 5 mm; sodium-doped cesium iodide detector; spatial resolution measurement; stopping power; system sensitivity; test gamma sources; thallium-doped sodium iodide detector; uncollimated scanner development; well-localized radiotracer distribution imaging; Crystals; Detectors; Imaging; Isotopes; Sensitivity; Spatial resolution; Gamma-ray detectors; medical imaging; nuclear imaging; spect;
fLanguage :
English
Journal_Title :
Nuclear Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9499
Type :
jour
DOI :
10.1109/TNS.2014.2299494
Filename :
6746680
Link To Document :
بازگشت