DocumentCode :
1057918
Title :
Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation
Author :
Babacan, S. Derin ; Molina, Rafael ; Katsaggelos, Aggelos K.
Author_Institution :
Northwestern Univ., Evanston
Volume :
17
Issue :
3
fYear :
2008
fDate :
3/1/2008 12:00:00 AM
Firstpage :
326
Lastpage :
339
Abstract :
In this paper, we propose novel algorithms for total variation (TV) based image restoration and parameter estimation utilizing variational distribution approximations. Within the hierarchical Bayesian formulation, the reconstructed image and the unknown hyperparameters for the image prior and the noise are simultaneously estimated. The proposed algorithms provide approximations to the posterior distributions of the latent variables using variational methods. We show that some of the current approaches to TV-based image restoration are special cases of our framework. Experimental results show that the proposed approaches provide competitive performance without any assumptions about unknown hyperparameters and clearly outperform existing methods when additional information is included.
Keywords :
Bayes methods; image restoration; parameter estimation; statistical distributions; television; variational techniques; TV image restoration; hierarchical Bayesian formulation; image reconstruction; parameter estimation; variational distribution approximation; Bayesian methods; image restoration; parameter estimation; total variation (TV); variational methods; Algorithms; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Models, Statistical; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Television; Video Recording;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2007.916051
Filename :
4446214
Link To Document :
بازگشت