Title :
Optimal parallel and pipelined processing through a new class of matrices with application to generalized spectral analysis
Author :
Corinthios, Michael J.
Author_Institution :
Dept. of Electr. & Comput. Eng., Ecole Polytech. de Montreal, Que., Canada
fDate :
4/1/1994 12:00:00 AM
Abstract :
A new class of general-base matrices, named sampling matrices, which are meant to bridge the gap between algorithmic description and computer architecture is proposed. “Poles,” “zeros,” “pointers,” and “spans” are among the terms introduced to characterize properties of this class of matrices. A formalism for the decomposition of a general matrix in terms of general-base sampling matrices is proposed. “Span” matrices are introduced to measure the dependence of a matrix span on algorithm parameters and, among others, the interaction between this class of matrices and the general-base perfect shuffle permutation matrix previously introduced. A classification of general-base parallel “recirculant” and parallel pipelined processors based on memory topology, access uniformity and shuffle complexity is proposed. The matrix formalism is then used to guide the search for algorithm factorizations leading to optimal parallel and pipelined processor architecture
Keywords :
matrix algebra; parallel architectures; pipeline processing; Chrestenson generalized Walsh transform; Poles; access uniformity; algorithm factorizations; algorithm parameters; computer architecture; general-base matrices; generalized perfect shuffle; generalized spectral analysis; matrices; matrix theory; memory topology; parallel pipelined processors; parallel processing; pipelined architecture; pipelined processing; pointers; sampling matrices; shuffle complexity; spans; zeros; Application software; Bridges; Computer architecture; Error correction; Fourier transforms; Parallel processing; Sampling methods; Signal processing; Spectral analysis; Topology;
Journal_Title :
Computers, IEEE Transactions on