DocumentCode :
1060693
Title :
Binary Mixtures of n-Alkanes for Tunable Thermohydraulic Microactuators
Author :
Lehto, Marcus ; Schweitz, Jan-Åke ; Thornell, Greger
Author_Institution :
Uppsala Univ., Uppsala
Volume :
16
Issue :
3
fYear :
2007
fDate :
6/1/2007 12:00:00 AM
Firstpage :
728
Lastpage :
733
Abstract :
The two objectives of this paper are related to the use of n-alkanes in actuators. The first objective is to study the thermomechanics of binary mixtures of dotriacontane and hexatriacontane to see if a quasi-stable thermal expansion can be obtained, and the second one is to find the correspondence between dilatometry [pressure, volume, and temperature (pVT) measurement] and differential scanning calorimetry (DSC). Results show that there is indeed a concentration-dependent plateau in the expansion curves and that the width and horizontal position of this can be adjusted. As compared with pure n-alkanes, the plateaus of the mixtures widen by a factor of 2-4, and as compared with pure hexatriacontane, they shift their low-end temperatures by 5 to 10, in the 25% to 75% concentration range. The mixtures´ plateaus (gathered around 0.06) are about 0.02 below those of the pure n-alkanes. It is shown that DSC can be used for a prediction of the thermomechanical properties of the substances, provided that a pVT reference exists, and the fact that the melting point increases with the pressure that is experienced with the dilatometer is considered. The qualitative similarity between the expansion and enthalpy curves is remarkable. About 25% to 30% of the total volume expansion is attributed to the solid-to-solid phase transition; the rest is attributed to thermal expansion and melting.
Keywords :
differential scanning calorimetry; enthalpy; extensometers; hydraulic actuators; melting point; microactuators; mixtures; organic compounds; thermal expansion; binary mixtures; concentration-dependent plateau; differential scanning calorimetry; dilatometry; dotriacontane; enthalpy curves; expansion curves; hexatriacontane; melting point; n-alkanes; pVT measurement; quasistable thermal expansion; solid-to-solid phase transition; thermomechanical properties; tunable thermohydraulic microactuators; Actuators; Automotive materials; Calorimetry; Microactuators; Polymers; Pressure measurement; Temperature measurement; Thermal expansion; Thermomechanical processes; Volume measurement; Differential scanning calorimetry (DSC); finite-element analysis (FEA); microactuator; n-alkane; paraffin wax; pressure, volume, and temperature (pVT) measurement;
fLanguage :
English
Journal_Title :
Microelectromechanical Systems, Journal of
Publisher :
ieee
ISSN :
1057-7157
Type :
jour
DOI :
10.1109/JMEMS.2007.893516
Filename :
4276810
Link To Document :
بازگشت