Title :
Walled LTSA Array for Rapid, High Spatial Resolution, and Phase-Sensitive Imaging to Visualize Plastic Landmines
Author :
Masuyama, Soichi ; Hirose, Akira
Author_Institution :
Tokyo Univ., Tokyo
Abstract :
We propose a walled linearly tapered slot antenna (LTSA) array to visualize plastic landmines. Previously, we reported an adaptive nonlinear visualization system based on a complex-valued self-organizing map (CSOM) that deals with complex amplitude texture in reflection images at multiple frequencies. The system distinguishes landmines from clutter by paying attention to textural features obtained by high spatial resolution and wideband reflection measurement. Because the system employed a mechanical scan of a pair of horn antennas, the measurement required a long time. An array antenna can reduce the time. The antenna element to be used there should therefore be compact and wideband. This paper reports the design and fabrication of a walled LTSA array visualization system. The antenna element has a 14 times 28 mm aperture size, and works at the 8-12 GHz frequency band. Because the structure is a simple combination of glass epoxy substrates and metal plates, we can easily fabricate low-cost and lightweight arrays. Electrical switches realize a high-speed scanning of 12 times 12 = 144 elements in total. We also report the results of a visualization experiment, in which plastic landmines are clearly visualized with the array in combination with the adaptive CSOM processing. Detection of landmines at frequencies of 10 GHz is only likely to be possible for targets buried a few centimeter deep or where the soil attenuation is very low. This might be a severe limitation of applicability of the method, as in field conditions soil attenuations of 10 dB or considerably more are commonly encountered, requiring the radar to operate at frequencies below 2-3 GHz. The best solution may be a multisensor system comprising these complementary high- and low-frequency radars.
Keywords :
adaptive antenna arrays; geophysical techniques; geophysics computing; ground penetrating radar; landmine detection; self-organising feature maps; slot antenna arrays; adaptive CSOM processing; adaptive nonlinear visualization system; compact wideband antenna; complex amplitude texture; complex valued self organizing map; electrical switches; frequency 8 GHz to 12 GHz; glass epoxy substrates; high spatial resolution imaging; high speed scanning; landmine detection; linearly tapered slot antenna; metal plates; phase sensitive imaging; plastic landmine visualization; rapid imaging; reflection images; size 14 mm; size 28 mm; textural features; walled LTSA array; wideband reflection measurement; Antenna measurements; Frequency; High-resolution imaging; Landmine detection; Linear antenna arrays; Optical reflection; Phased arrays; Plastics; Spatial resolution; Visualization; Complex-valued self-organizing map (CSOM); ground-penetrating radar (GPR); linearly tapered slot antenna (LTSA); plastic landmine;
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
DOI :
10.1109/TGRS.2007.897418