Title :
A Large-Scale Systematic Evaluation of Algorithms Using Ground-Penetrating Radar for Landmine Detection and Discrimination
Author :
Wilson, Joseph N. ; Gader, Paul ; Lee, Wen-Hsiung ; Frigui, Hichem ; Ho, K.C.
Author_Institution :
Florida University, Gainesville
Abstract :
A variety of algorithms for the detection of landmines and discrimination between landmines and clutter objects have been presented. We discuss four quite different approaches in using data collected by a vehicle-mounted ground-penetrating radar sensor to detect landmines and distinguish them from clutter objects. One uses edge features in a hidden Markov model; the second uses geometric features in a feed-forward order-weighted average network; the third employs spectral features as its basis; and the fourth clusters edge histograms. We present the results of a large-scale cross-validation evaluation that uses a diverse set of data collected over 41 807.57 m2 of ground, including 1593 mine encounters. Finally, we discuss the results of that ranking and what one can conclude concerning the performance of these four algorithms in various settings.
Keywords :
feature extraction; feedforward; geophysical techniques; ground penetrating radar; landmine detection; radar clutter; remote sensing by radar; clutter objects; edge features; feedforward order-weighted average network; geometric features; hidden Markov model; landmine detection; landmine discrimination; vehicle-mounted ground-penetrating radar sensor; Clutter; Feedforward systems; Ground penetrating radar; Hidden Markov models; Histograms; Landmine detection; Large-scale systems; Object detection; Radar detection; Vehicle detection; Discrimination; ground-penetrating radar (GPR); landmine detection;
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
DOI :
10.1109/TGRS.2007.900993